LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2013

CH 3809 - COORDINATION CHEMISTRY

Date: 05/11/2013 Dept. No. Max.: 100 Marks
Time: 9:00 - 12:00

Part-A

Answer all questions. Each question carries two marks.

- 1. Why do d⁸metal ionsreadily form square planar complexes?
- 2. Is MnCr₂O₄ likely to have a normal or inverse spinel structure?
- 3. What is the ground term of a free ion with 3d⁹ configuration?
- 4. What are π -acceptor ligands? Give two examples.
- 5. Explain why the bond order of metal-ligand in mixed phosphine carbonyls varies in the order(Ph₃P)₃Mo(CO)₃< (Cl₃P)₃Mo(CO)₃.
- 6. What are electron exchange reactions? Cite an example.
- 7. Why is associative mechanism rare in substitution of octahedral coordination compounds?
- 8. What are the characteristics of charge transfer bands in the electronic spectrum of a coordination compound?
- 9. What are excited states and intermediates? Cite one example.
- 10. What is picket fence porphyrin?

Part-B

Answer eight questions. Each question carries five marks

- 11. What is tetragonal distortion? Which dⁿ configurations lead to strong Jahn-Teller distortion in octahedral and tetrahedral complexes?
- 12. How do you account for the variation of ionic radii of M²⁺ and M³⁺ ions (M=3d series) using crystal field theory?
- 13. How does MO theory account for the paramagnetism of [FeF₆]⁴⁻?
- 14. How many electronic absorption peaks can be expected for the tetrahedral complex of [NiCl₄]²⁻?
- 15. Which dⁿ configurations show quenching of orbital angular momentum if it forms octahedral, high and low spin complexes? Give reasons.
- 16. Discuss the synthesis and uses of *cis*-platin.
- 17. What is Marcus Hush equation? What is its application?
- 18. Write a brief notes on Fischer Tropsch process.
- 19. What are photo isomerization reactions? Cite an example.
- 20. Explain various types of charge transfer photochemical reactions with an example for each type.
- 21. Explain the nature of forces operating in supramolecular assemblies?
- 22. What is carboxypeptidase? What is its application?

Part-C

Answer four questions. Each question carries ten marks

23.	(a) Explain why Cl ⁻ acts as a weak ligand whereas CN ⁻ acts as strong ligand in octahedraltransition
	metal complexes with the help of MO theory.
	(b) The crystal field splitting parameter (Δ_0) of [IrCl ₆] ³⁻ is 27,600 cm ⁻¹ . Convert this wave number to
24	nanometer. (6+4) Explain Orgel and Tanabe-Sugano diagrams. How are they useful? (3+3+4)
	Explain Orgel and Tanabe-Sugano diagrams. How are they useful? (3+3+4) (a) Explain how is EPR hyperfine splitting helpful in characterizing bis-(salicylaldimine) copper(II)
23.	complex ion.
	(b) Explain nuclear quadrapole interactions. (5+5)
26.	(a) Discuss various mechanisms observed in the substitution reactions of coordination compounds.
	(b) How will you quantify metal-ligand orbital interaction? (6+4)
27.	Explain the following. (a) Theoretical basis of trans effect (b) Angular scaling factors (5+5)
28.	(a) What are copper proteins? Also explain type I, type II and type III copper systems with specific
	example.
	(b) Explain the chemistry of photosynthesis in chlorophyll. (6+4)